

GUIDELINES FOR VALUE ADDED COURSE (VAC) 2021-22

1. Evaluation

 The value added courses shall carry 100 marks and shall be evaluated through internal

Assessments only.

Continuous Assessment (CA)

The CA shall be a combination of a variety of tools such as class test,

assignment, seminars, and viva-voce that would be suitable to the course.

The break-up of marks shall be as follows:

 Theory Course

Item Marks Grading Marks

Quiz Tests/Class Assignments/Home

Assignments/Google form online

test

40 4

Seminar/ Class Presentations /Class

Performance

30 3

Viva-voce 30 3

Total 100 10

 Practical Course

Item Marks Grading Marks

Demonstration of Skills and Viva

Voce

40 4

Assignments& Exercises 30 3

Lab Performance 30 3

Total 100 10

Continuous Assessment Tests

i. Continuous assessments shall be conducted preferably one in the middle and

other at the end of the course.

ii. The duration of the test, the pattern of question paper and the units included

shall be decided by the Course Coordinator and prior intimation shall be given

to the students.

iii. The assessment shall be done by the course teacher/Course Coordinator.

iv. No improvement option shall be available for CA. However, if a student could

not attend the test for any valid reason, the prerogative of arranging a special

test lies with the Course Coordinator in consultation with the Head of the

Department.

2. Grading

Evaluation of the performance of the student will be rated as shown in the

Table
Marks Grade Grade Point

90 – 100 O 10

75 – 89 A+ 9

65 – 74 A 8
55 – 64 B+ 7

50 – 54 B 6

45 – 49 C 5

40 – 44 P 4

Less than 40 or absent F 0

The grades and credits obtained in VACs shall not be considered for

calculating the GPA and CGPA of the regular course that the student is undergoing. The

percentage of marks obtained by a candidate in a course will be indicated in the

awarding certificate.

3. Awarding Certificate

On successful completion of the VAC, the student shall be issued a certificate

duly signed by the Head of the Department and the Course Coordinator.

 Course Coordinator HoD

1/5/24, 11:48 AM Assessment

https://docs.google.com/forms/d/1ElCd4DCptsfD07P5qDAAEi-PurA7PuHNx_uGi0ehLGI/edit 1/11

1. Email *

2.

3.

4.

5. 1 point

Mark only one oval.

.delete() method

pop(my_list)

del(my_list)

.pop() method

Assessment
Ethical Hacking

* Indicates required question

Email *

Name *

Roll No. *

1) What built-in list method would you use to remove items from a list?

1/5/24, 11:48 AM Assessment

https://docs.google.com/forms/d/1ElCd4DCptsfD07P5qDAAEi-PurA7PuHNx_uGi0ehLGI/edit 2/11

6. 1 point

Mark only one oval.

It tells the computer which chunk of code to run if the instructions you coded are
incorrect.

It runs one chunk of code if all the imports were successful, and another chunk of
code if the imports were not successful.

It executes one chunk of code if a condition is true, but a different chunk of code
if the condition is false.

It tells the computer which chunk of code to run if the is enough memory to
handle it, and which chunk of code to run if there is not enough memory to handle it.

7. 1 point

Mark only one oval.

It creates a path from multiple values in an iterable to a single value.

It applies a function to each item in an iterable and returns the value of that
function.

It converts a complex value type into simpler value types.

It creates a mapping between two different elements of different iterables.

8. 1 point

Mark only one oval.

The function will return a RuntimeError if you don't return a value.

If the return keyword is absent, the function will return None.

If the return keyword is absent, the function will return True.

The function will enter an infinite loop because it won't know when to stop
executing its code.

2) What is the purpose of an if/else statement?

3) What does the built-in map() function do?

4) If you don't explicitly return a value from a function, what happens?

1/5/24, 11:48 AM Assessment

https://docs.google.com/forms/d/1ElCd4DCptsfD07P5qDAAEi-PurA7PuHNx_uGi0ehLGI/edit 3/11

9. 1 point

Mark only one oval.

when it encounters an infinite loop

when it encounters an if/else statement that contains a break keyword

when it has assessed each item in the iterable it is working on or a break keyword
is encountered

when the runtime for the loop exceeds O(n^2)

10. 1 point

Mark only one oval.

A set is an ordered collection unique items. A list is an unordered collection of
non-unique items.

Elements can be retrieved from a list but they cannot be retrieved from a set.

A set is an ordered collection of non-unique items. A list is an unordered
collection of unique items.

A set is an unordered collection unique items. A list is an ordered collection of
non-unique items.

11. 1 point

Mark only one oval.

fruit_info ['price'] = 1.5

my_list [3.5] = 1.5

1.5 = fruit_info ['price]

my_list['price'] == 1.5

5) When does a for loop stop iterating?

6) What is key difference between a set and a list?

7) Review the code below. What is the correct syntax for changing the
price to 1.5?

fruit_info = { 'fruit': 'apple', 'count': 2, 'price': 3.5 }

1/5/24, 11:48 AM Assessment

https://docs.google.com/forms/d/1ElCd4DCptsfD07P5qDAAEi-PurA7PuHNx_uGi0ehLGI/edit 4/11

12. 1 point

Mark only one oval.

m

m + n

n

m * n

13. 1 point

Mark only one oval.

m _ n _ p

the greater value of (m,n,p)

1 million

m + n + p

8) You are given a piece of code. Assume m and n are already defined as
some positive integer value. When it completes, how many tuples will my
list contain?

mylist = []
for i in range(m):
 for j in range(n):
 mylist.append((i,j))

9) Assume m, n and p are positive integers. In the following
comprehension, how many times will the function randint be called?

[[[randint(1,100) for i in range(m)] for j in range(n)] for k in range(p)]

1/5/24, 11:48 AM Assessment

https://docs.google.com/forms/d/1ElCd4DCptsfD07P5qDAAEi-PurA7PuHNx_uGi0ehLGI/edit 5/11

14. 1 point

Mark only one oval.

orange = my_list[1]

my_list[1] = 'orange'

my_list['orange'] = 1

my_list[1] == orange

15. 1 point

Mark only one oval.

Use lists instead of tuples when you have a collection of related but dissimilar
objects.

Use tuples instead of lists when you have a common collection of similar
objects.

Use tuples instead of lists for functions that need to return multiple values.

Use lists instead of tuples when the position of elements is important.

16. 1 point

Mark only one oval.

1 2 3 4 5 Done!

0 1 2 3 4 5 Done!

0 1 2 3 4 Done!

You will get a syntax error.

10) What is the correct syntax for replacing the string apple in the list with
the string orange?

my_list = [2, 'apple', 3.5]

11) Which comparison of lists and tuples in Python is correct?

12) What will this code output to the screen?
for i in range(5):
 print(i)
else:
 print("Done!")

1/5/24, 11:48 AM Assessment

https://docs.google.com/forms/d/1ElCd4DCptsfD07P5qDAAEi-PurA7PuHNx_uGi0ehLGI/edit 6/11

17. 1 point

Mark only one oval.

SET

TUPLE

DICTIONARY

LIST

18. 1 point

Mark only one oval.

No error

Assertion error

Input output error

Name error

19. 1 point

Mark only one oval.

NameError

ValueError

IndexError

TypeError

13) Which collection is ordered, changeable, and allows duplicate
members?

14) What happens if the file is not found in the following Python code?
a=False
while not a:
 try:
 f_n = input("Enter file name")
 i_f = open(f_n, 'r')
 except:
 print("Input file not found")

15) What will be the output of the following Python code?
lst = [1, 2, 3]
lst[3]

1/5/24, 11:48 AM Assessment

https://docs.google.com/forms/d/1ElCd4DCptsfD07P5qDAAEi-PurA7PuHNx_uGi0ehLGI/edit 7/11

20. 1 point

Mark only one oval.

Syntax, Syntax

Semantic, Syntax

Semantic, Semantic

Syntax, Semantic

21. 1 point

Mark only one oval.

an object

a special function

a standard module

a module

22. 1 point

Mark only one oval.

zero

one

zero or more

one or more

16) Identify the type of error in the following Python codes?
Print(“Good Morning”)
print(“Good night)

17) An exception is ____________

18) How many keyword arguments can be passed to a function in a single
function call?

1/5/24, 11:48 AM Assessment

https://docs.google.com/forms/d/1ElCd4DCptsfD07P5qDAAEi-PurA7PuHNx_uGi0ehLGI/edit 8/11

23. 1 point

Mark only one oval.

0

1

more than one

more than zero

24. 1 point

Mark only one oval.

print(pi)

print(math.pi)

from math import pi print(pi)

from math import pi print(math.pi)

25. 1 point

Mark only one oval.

.

*

->

&

26. 1 point

Mark only one oval.

def function function_name():

declare function function_name():

def function_name():

declare function_name():

19) How many except statements can a try-except block have?

20) Which of the following will print the pi value defined in math module?

21) Which operator is used in Python to import modules from packages?

22) How is a function declared in Python?

1/5/24, 11:48 AM Assessment

https://docs.google.com/forms/d/1ElCd4DCptsfD07P5qDAAEi-PurA7PuHNx_uGi0ehLGI/edit 9/11

27. 1 point

Mark only one oval.

function_name()

call function_name()

ret function_name()

function function_name()

28. 1 point

Mark only one oval.

x is the formal argument.

a is the actual argument.

fn(x) is the function signature.

x is the actual argument.

29. 1 point

Mark only one oval.

The variables used inside function are called local variables.

The local variables of a particular function can be used inside other functions,
but these cannot be used in global space

The variables used outside function are called global variables

In order to change the value of global variable inside function, keyword global is
used.

23) Which one of the following is the correct way of calling a function?

24) Choose the correct option with reference to below Python code?
def fn(a):

print(a)

x=90

fn(x)

25) Which one of the following is incorrect?

1/5/24, 11:48 AM Assessment

https://docs.google.com/forms/d/1ElCd4DCptsfD07P5qDAAEi-PurA7PuHNx_uGi0ehLGI/edit 10/11

This content is neither created nor endorsed by Google.

 Forms

https://www.google.com/forms/about/?utm_source=product&utm_medium=forms_logo&utm_campaign=forms
https://www.google.com/forms/about/?utm_source=product&utm_medium=forms_logo&utm_campaign=forms
https://www.google.com/forms/about/?utm_source=product&utm_medium=forms_logo&utm_campaign=forms

1/5/24, 11:48 AM Assessment

https://docs.google.com/forms/d/1ElCd4DCptsfD07P5qDAAEi-PurA7PuHNx_uGi0ehLGI/edit 11/11

Email Address Score Email

priyanjalmalhotra4@gmail.co
m 23 / 25

priyanjalmalhotra4@gmail.co
m

gopalrajput11a@gmail.com 24 / 25 gopalrajput11a@gmail.com

singhal2002y@gmail.com 9 / 25 singhal2002y@gmail.com

siddharthpopli15@gmail.com 24 / 25 Siddharthpopli15@gmail.con

rohittanwar1287@gmail.com 20 / 25 rohittanwar1287@gmail.com

vrindasuneja2004@gmail.com 18 / 25 vrindasuneja2004@gmail.com

prajjwaldwivedi01@gmail.com 9 / 25 prajjwaldwivedi01@gmail.com

viveksharma8481@gmail.com 18 / 25 8750779948

keshavkumar691999@gmail.c
om 23 / 25 9205490649

thakurharsh236@gmail.com 21 / 25 8938810595

deepakaiml12@gmail.com 17 / 25 9671248852

gibrailzaidi@gmil.com 17 / 25 8126560284

gazabthakur07@gmail.com 17 / 25 8958280167

adityamishra.am71@gmail.co
m 23 / 25 9835319964

bhinderfazal@gmail.com 23 / 25 90454097615

anujmishra7069@gmail.com 23 / 25 8521407255

adarshrajput1914@gmail.com 17 / 25 adarshrajput1914@gmail.com

bhardwajsagar5498@gmail.co
m 11 / 25

bhardwajsagar5498@gmail.co
m

choudharyanas19@gmail.com 17 / 25 8920295476

hs9650612804@gmail.com 21 / 25 9650612804

faizannasim59@gmail.com 20 / 25 7532053343

md.amberkhan9631@gmail.co
m 15 / 25 8700753024

Srivastavayushbth@gmail.co
m 17 / 25 6205646148

gaganshuyadav16@gmail.co
m 21 / 25 9868043151

faridianzar786@gmail.com 20 / 25 7895829079

arunpandey916162@gmail.co
m 17 / 25 8756295300

anshumansoni4546@gmail.co
m 17 / 25 7237031490

himanshusharma1454@gmail.
com 17 / 25 6393381416

vermavishesh345@gmail.com 16 / 25 vermavishesh345@gmail.com

kamranahmadmd463@gmail.c
om 20 / 25

kamranahmadmd463@gmail.c
om

viraz.rr@gmail.com 16 / 25 viraz.rr@gmail.com

manishking241@gmail.com 18 / 25 9177893190

shivamsinghcse19@gmail.co
m 20 / 25

shivamsinghcse19@gmail.co
m

himanshurautela87@gmail.co
m 22 / 25

himanshurautela87@gmail.co
m

rawatsumit1290@gmail.com 23 / 25 rawatsumit1290@gmail.com

hs185008@gmail.com 21 / 25 hs185008@gmail.com

me.souravk03@gmail.com 7 / 25 me.souravk03@gmail.com

arcuscode@gmail.com 15 / 25 arcuscode@gmail.com

naveensangwanhas@gmail.co
m 15 / 25

naveensangwanhas@gmail.co
m

vaibhavjain98111@gmail.com 15 / 25 vaibhavjain98111@gmail.com

fagunchauhan4@gmail.com 16 / 25 fagunchauhan4@gmail.com

devmohansharma177013@gm
ail.com 19 / 25

devmohansharma177013@gm
ail.com

sidra.tabassum2004@gmail.co
m 12 / 25 sidra.tab1804@gmail.com

jhanvikhanna2@gmail.com 13 / 25 jhanvikhanna2@gmail.com

aviralrastogi2004@gmail.com 13 / 25 aviralrastogi2004@gmail.com

aanchalmangla73@gmail.com 19 / 25 aanchalmangla73@gmail.com

rajpriya012005@gmail.com 20 / 25 rajpriya012005@gmail.com

tcccvv@gmail.con 6 / 25 Yfgb@ynmq

summitparmar@gmail.com 23 / 25 summitparmar@gmail.com

PARTHG5082@GMAIL.COM 22 / 25 parthg5082@gmail.com

mittalmanya10@gmail.com 17 / 25 mittalmanya10@gmail.com

mrukaiya13@gmail.com 24 / 25 mrukaiya13@gmail.com

sagarparasher04@gmail.com 23 / 25 sagarparasher04@gmail.com

samarthmadaan72@gmail.co
m 23 / 25

samarthmadaan72@gmail.co
m

yuvsharma464@gmail.com 24 / 25 yuvsharma464@gmail.com

ajeetsingh4656@gmail.com 24 / 25 ajeetsingh4656@gmail.com

shreymitra376@gamil.com 20 / 25 shreymitra376@gmail.com

nsnikitasoni17@gmail.com 17 / 25 nsnikitasoni17@gmail.com

namitjoshi2004@gmail.com 24 / 25 namitjoshi2004@gmail.com

mankirat.matharu@gmail.com 10 / 25 mankirat.matharu@gmail.com

Name Roll No. 1) What built-in list method
would you use to remove
items from a list?

Priyanjal Malhotra 13 .pop() method

Gopal Kumar 02721302022 .pop() method

Yatharth singhal 04321302022 .pop() method

Siddharth popli 53 .pop() method

Rohit Tanwar 00121302022 .pop() method

Vrinda Suneja 03521302022 .pop() method

Prajjwal Dwivedi 2.10132E+12 pop(my_list)

vivek 2200041 pop(my_list)

Keshav Kumar 2200040 .pop() method

Harsh gour 2.10132E+12 .pop() method

DEEPAK 2.10132E+12 .pop() method

Gibrail Zaidi 2.10132E+12 .pop() method

Gazab Bhati 2.10132E+12 .pop() method

Aditya Mishra 2.10132E+12 .pop() method

Fazal Singh 2.10132E+12 .pop() method

ANUJ MISHRA 2.10132E+12 .pop() method

Adarsh Kumar 2.10132E+12 pop(my_list)

sagar sharma 2200122 del(my_list)

Anas choudhary 2200094 .pop() method

Harsh Sharma 2.10132E+12 .pop() method

faizan nasim 2200067 .delete() method

Md Amber Khan 2.10132E+12 .pop() method

Ayush kumar Srivastav 2.10132E+12 .pop() method

Gaganshu yadav 2.10132E+12 .pop() method

Anzar Hashmat 2200095 .pop() method

Arun Pandey 2.10132E+12 .pop() method

Anshuman Soni 2.10132E+12 pop(my_list)

himanshu sharma 2200071 .pop() method

Vishesh Verma 2.10132E+12 .pop() method

Kamran Ahmad 2.19132E+12 .pop() method

Viraz Anand Gupta 2.10132E+12 .pop() method

manish kumar singh 2.10132E+12 pop(my_list)

shivam singh 2.10132E+12 .pop() method

Himanshu Singh Rautela 2.10132E+12 .pop() method

Sumit rawat 2.10132E+12 .pop() method

Himanshu singh 2.10132E+12 .pop() method

sourav kumar 2.10132E+12 pop(my_list)

Nav Verma 01217002022 .pop() method

Naveen Sangwan 02417002022 .pop() method

VAIBHAV JAIN 00617002022 pop(my_list)

Fagun 41 .pop() method

Dev Mohan Sharma 01017002022 .pop() method

Sidra Tabassum 04617002022 .delete() method

Jhanvi Khanna 35617002022 del(my_list)

Aviral Rastogi 01817002022 .pop() method

Aanchal 04717002022 .pop() method

Priya kumari 00217002022 del(my_list)

Dff F .delete() method

Shankar 3 pop(my_list)

Parth Goyal 00421302022 pop(my_list)

Manya Mittal 35321302022 .pop() method

Rukaiya 38 .pop() method

Sagar parasher 22 .pop() method

Samarth nadaan 01421302022 .delete() method

Yuv Sharma 32 .pop() method

Ajeet Singh 02121302022 .pop() method

Shrey 17 pop(my_list)

Nikita Soni 02321302022 pop(my_list)

Namit Joshi 8 .pop() method

Mankirat Singh 06 .delete() method

2) What is the purpose of an
if/else statement?

3) What does the built-in
map() function do?

4) If you don't explicitly return
a value from a function, what
happens?

It executes one chunk of code
if a condition is true, but a
different chunk of code if the
condition is false.

It creates a mapping between
two different elements of
different iterables.

If the return keyword is
absent, the function will return
None.

It executes one chunk of code
if a condition is true, but a
different chunk of code if the
condition is false.

It converts a complex value
type into simpler value types.

If the return keyword is
absent, the function will return
None.

It executes one chunk of code
if a condition is true, but a
different chunk of code if the
condition is false.

It applies a function to each
item in an iterable and returns
the value of that function.

If the return keyword is
absent, the function will return
None.

It executes one chunk of code
if a condition is true, but a
different chunk of code if the
condition is false.

It creates a mapping between
two different elements of
different iterables.

If the return keyword is
absent, the function will return
None.

It executes one chunk of code
if a condition is true, but a
different chunk of code if the
condition is false.

It applies a function to each
item in an iterable and returns
the value of that function.

If the return keyword is
absent, the function will return
None.

It executes one chunk of code
if a condition is true, but a
different chunk of code if the
condition is false.

It applies a function to each
item in an iterable and returns
the value of that function.

If the return keyword is
absent, the function will return
None.

It runs one chunk of code if all
the imports were successful,
and another chunk of code if
the imports were not
successful.

It applies a function to each
item in an iterable and returns
the value of that function.

The function will enter an
infinite loop because it won't
know when to stop executing
its code.

It executes one chunk of code
if a condition is true, but a
different chunk of code if the
condition is false.

It applies a function to each
item in an iterable and returns
the value of that function.

If the return keyword is
absent, the function will return
None.

It executes one chunk of code
if a condition is true, but a
different chunk of code if the
condition is false.

It applies a function to each
item in an iterable and returns
the value of that function.

If the return keyword is
absent, the function will return
None.

It executes one chunk of code
if a condition is true, but a
different chunk of code if the
condition is false.

It applies a function to each
item in an iterable and returns
the value of that function.

If the return keyword is
absent, the function will return
None.

It executes one chunk of code
if a condition is true, but a
different chunk of code if the
condition is false.

It applies a function to each
item in an iterable and returns
the value of that function.

The function will return a
RuntimeError if you don't
return a value.

It executes one chunk of code
if a condition is true, but a
different chunk of code if the
condition is false.

It applies a function to each
item in an iterable and returns
the value of that function.

If the return keyword is
absent, the function will return
None.

It executes one chunk of code
if a condition is true, but a
different chunk of code if the
condition is false.

It applies a function to each
item in an iterable and returns
the value of that function.

If the return keyword is
absent, the function will return
None.

It executes one chunk of code
if a condition is true, but a
different chunk of code if the
condition is false.

It applies a function to each
item in an iterable and returns
the value of that function.

If the return keyword is
absent, the function will return
None.It tells the computer which

chunk of code to run if the is
enough memory to handle it,
and which chunk of code to
run if there is not enough
memory to handle it.

It creates a mapping between
two different elements of
different iterables.

If the return keyword is
absent, the function will return
None.

It executes one chunk of code
if a condition is true, but a
different chunk of code if the
condition is false.

It applies a function to each
item in an iterable and returns
the value of that function.

If the return keyword is
absent, the function will return
None.

It executes one chunk of code
if a condition is true, but a
different chunk of code if the
condition is false.

It creates a mapping between
two different elements of
different iterables.

If the return keyword is
absent, the function will return
True.

It executes one chunk of code
if a condition is true, but a
different chunk of code if the
condition is false.

It creates a mapping between
two different elements of
different iterables.

If the return keyword is
absent, the function will return
True.

It executes one chunk of code
if a condition is true, but a
different chunk of code if the
condition is false.

It applies a function to each
item in an iterable and returns
the value of that function.

If the return keyword is
absent, the function will return
True.

It executes one chunk of code
if a condition is true, but a
different chunk of code if the
condition is false.

It applies a function to each
item in an iterable and returns
the value of that function.

If the return keyword is
absent, the function will return
True.

It runs one chunk of code if all
the imports were successful,
and another chunk of code if
the imports were not
successful.

It applies a function to each
item in an iterable and returns
the value of that function.

If the return keyword is
absent, the function will return
True.

It executes one chunk of code
if a condition is true, but a
different chunk of code if the
condition is false.

It applies a function to each
item in an iterable and returns
the value of that function.

If the return keyword is
absent, the function will return
True.

It executes one chunk of code
if a condition is true, but a
different chunk of code if the
condition is false.

It applies a function to each
item in an iterable and returns
the value of that function.

The function will return a
RuntimeError if you don't
return a value.

It tells the computer which
chunk of code to run if the
instructions you coded are
incorrect.

It applies a function to each
item in an iterable and returns
the value of that function.

If the return keyword is
absent, the function will return
None.

It executes one chunk of code
if a condition is true, but a
different chunk of code if the
condition is false.

It applies a function to each
item in an iterable and returns
the value of that function.

If the return keyword is
absent, the function will return
True.

It executes one chunk of code
if a condition is true, but a
different chunk of code if the
condition is false.

It applies a function to each
item in an iterable and returns
the value of that function.

The function will return a
RuntimeError if you don't
return a value.It tells the computer which

chunk of code to run if the is
enough memory to handle it,
and which chunk of code to
run if there is not enough
memory to handle it.

It creates a mapping between
two different elements of
different iterables.

If the return keyword is
absent, the function will return
True.

It runs one chunk of code if all
the imports were successful,
and another chunk of code if
the imports were not
successful.

It converts a complex value
type into simpler value types.

If the return keyword is
absent, the function will return
True.

It executes one chunk of code
if a condition is true, but a
different chunk of code if the
condition is false.

It applies a function to each
item in an iterable and returns
the value of that function.

The function will return a
RuntimeError if you don't
return a value.

It executes one chunk of code
if a condition is true, but a
different chunk of code if the
condition is false.

It applies a function to each
item in an iterable and returns
the value of that function.

If the return keyword is
absent, the function will return
None.

It executes one chunk of code
if a condition is true, but a
different chunk of code if the
condition is false.

It applies a function to each
item in an iterable and returns
the value of that function.

The function will return a
RuntimeError if you don't
return a value.

It executes one chunk of code
if a condition is true, but a
different chunk of code if the
condition is false.

It applies a function to each
item in an iterable and returns
the value of that function.

If the return keyword is
absent, the function will return
None.

It runs one chunk of code if all
the imports were successful,
and another chunk of code if
the imports were not
successful.

It creates a path from multiple
values in an iterable to a
single value.

If the return keyword is
absent, the function will return
None.

It executes one chunk of code
if a condition is true, but a
different chunk of code if the
condition is false.

It applies a function to each
item in an iterable and returns
the value of that function.

If the return keyword is
absent, the function will return
None.

It executes one chunk of code
if a condition is true, but a
different chunk of code if the
condition is false.

It applies a function to each
item in an iterable and returns
the value of that function.

If the return keyword is
absent, the function will return
None.

It runs one chunk of code if all
the imports were successful,
and another chunk of code if
the imports were not
successful.

It converts a complex value
type into simpler value types.

The function will enter an
infinite loop because it won't
know when to stop executing
its code.

It executes one chunk of code
if a condition is true, but a
different chunk of code if the
condition is false.

It creates a path from multiple
values in an iterable to a
single value.

If the return keyword is
absent, the function will return
True.

It executes one chunk of code
if a condition is true, but a
different chunk of code if the
condition is false.

If the return keyword is
absent, the function will return
None.

It executes one chunk of code
if a condition is true, but a
different chunk of code if the
condition is false.

If the return keyword is
absent, the function will return
None.

It executes one chunk of code
if a condition is true, but a
different chunk of code if the
condition is false.

It creates a path from multiple
values in an iterable to a
single value.

If the return keyword is
absent, the function will return
None.

It executes one chunk of code
if a condition is true, but a
different chunk of code if the
condition is false.

It creates a mapping between
two different elements of
different iterables.

If the return keyword is
absent, the function will return
None.

It executes one chunk of code
if a condition is true, but a
different chunk of code if the
condition is false.

It converts a complex value
type into simpler value types.

If the return keyword is
absent, the function will return
None.

The function will enter an
infinite loop because it won't
know when to stop executing
its code.

It executes one chunk of code
if a condition is true, but a
different chunk of code if the
condition is false.

It creates a mapping between
two different elements of
different iterables.

The function will return a
RuntimeError if you don't
return a value.

It executes one chunk of code
if a condition is true, but a
different chunk of code if the
condition is false.

It applies a function to each
item in an iterable and returns
the value of that function.

The function will enter an
infinite loop because it won't
know when to stop executing
its code.

It executes one chunk of code
if a condition is true, but a
different chunk of code if the
condition is false.

It applies a function to each
item in an iterable and returns
the value of that function.

If the return keyword is
absent, the function will return
None.

It executes one chunk of code
if a condition is true, but a
different chunk of code if the
condition is false.

If the return keyword is
absent, the function will return
None.

It executes one chunk of code
if a condition is true, but a
different chunk of code if the
condition is false.

It converts a complex value
type into simpler value types.

If the return keyword is
absent, the function will return
True.

It executes one chunk of code
if a condition is true, but a
different chunk of code if the
condition is false.

It applies a function to each
item in an iterable and returns
the value of that function.

If the return keyword is
absent, the function will return
None.

It executes one chunk of code
if a condition is true, but a
different chunk of code if the
condition is false.

It converts a complex value
type into simpler value types.

If the return keyword is
absent, the function will return
None.

It executes one chunk of code
if a condition is true, but a
different chunk of code if the
condition is false.

It applies a function to each
item in an iterable and returns
the value of that function.

If the return keyword is
absent, the function will return
None.

It executes one chunk of code
if a condition is true, but a
different chunk of code if the
condition is false.

It applies a function to each
item in an iterable and returns
the value of that function.

If the return keyword is
absent, the function will return
None.

It executes one chunk of code
if a condition is true, but a
different chunk of code if the
condition is false.

It applies a function to each
item in an iterable and returns
the value of that function.

If the return keyword is
absent, the function will return
None.

It executes one chunk of code
if a condition is true, but a
different chunk of code if the
condition is false.

It applies a function to each
item in an iterable and returns
the value of that function.

If the return keyword is
absent, the function will return
None.

It executes one chunk of code
if a condition is true, but a
different chunk of code if the
condition is false.

It creates a path from multiple
values in an iterable to a
single value.

If the return keyword is
absent, the function will return
None.

It executes one chunk of code
if a condition is true, but a
different chunk of code if the
condition is false.

It applies a function to each
item in an iterable and returns
the value of that function.

If the return keyword is
absent, the function will return
None.

It executes one chunk of code
if a condition is true, but a
different chunk of code if the
condition is false.

It applies a function to each
item in an iterable and returns
the value of that function.

If the return keyword is
absent, the function will return
None.

It executes one chunk of code
if a condition is true, but a
different chunk of code if the
condition is false.

It applies a function to each
item in an iterable and returns
the value of that function.

If the return keyword is
absent, the function will return
None.

It executes one chunk of code
if a condition is true, but a
different chunk of code if the
condition is false.

It applies a function to each
item in an iterable and returns
the value of that function.

If the return keyword is
absent, the function will return
None.

It executes one chunk of code
if a condition is true, but a
different chunk of code if the
condition is false.

It converts a complex value
type into simpler value types.

If the return keyword is
absent, the function will return
True.

5) When does a for loop stop
iterating?

6) What is key difference
between a set and a list?

7) Review the code below.
What is the correct syntax for
changing the price to 1.5?

fruit_info = { 'fruit': 'apple',
'count': 2, 'price': 3.5 }

when it has assessed each
item in the iterable it is
working on or a break
keyword is encountered

A set is an unordered
collection unique items. A list
is an ordered collection of non-
unique items. fruit_info ['price'] = 1.5

when it has assessed each
item in the iterable it is
working on or a break
keyword is encountered

A set is an unordered
collection unique items. A list
is an ordered collection of non-
unique items. fruit_info ['price'] = 1.5

when it encounters an if/else
statement that contains a
break keyword

A set is an ordered collection
of non-unique items. A list is
an unordered collection of
unique items. fruit_info ['price'] = 1.5

when it has assessed each
item in the iterable it is
working on or a break
keyword is encountered

A set is an unordered
collection unique items. A list
is an ordered collection of non-
unique items. fruit_info ['price'] = 1.5

when it has assessed each
item in the iterable it is
working on or a break
keyword is encountered

A set is an unordered
collection unique items. A list
is an ordered collection of non-
unique items. fruit_info ['price'] = 1.5

when it has assessed each
item in the iterable it is
working on or a break
keyword is encountered

A set is an unordered
collection unique items. A list
is an ordered collection of non-
unique items. fruit_info ['price'] = 1.5

when it encounters an infinite
loop

A set is an ordered collection
unique items. A list is an
unordered collection of non-
unique items. fruit_info ['price'] = 1.5

when it has assessed each
item in the iterable it is
working on or a break
keyword is encountered

A set is an unordered
collection unique items. A list
is an ordered collection of non-
unique items. fruit_info ['price'] = 1.5

when it has assessed each
item in the iterable it is
working on or a break
keyword is encountered

A set is an unordered
collection unique items. A list
is an ordered collection of non-
unique items. fruit_info ['price'] = 1.5

when it has assessed each
item in the iterable it is
working on or a break
keyword is encountered

A set is an unordered
collection unique items. A list
is an ordered collection of non-
unique items. fruit_info ['price'] = 1.5

when it encounters an if/else
statement that contains a
break keyword

A set is an unordered
collection unique items. A list
is an ordered collection of non-
unique items. fruit_info ['price'] = 1.5

when it has assessed each
item in the iterable it is
working on or a break
keyword is encountered

A set is an unordered
collection unique items. A list
is an ordered collection of non-
unique items. fruit_info ['price'] = 1.5

when it has assessed each
item in the iterable it is
working on or a break
keyword is encountered

A set is an unordered
collection unique items. A list
is an ordered collection of non-
unique items. fruit_info ['price'] = 1.5

when it has assessed each
item in the iterable it is
working on or a break
keyword is encountered

A set is an unordered
collection unique items. A list
is an ordered collection of non-
unique items. fruit_info ['price'] = 1.5

when it has assessed each
item in the iterable it is
working on or a break
keyword is encountered

A set is an unordered
collection unique items. A list
is an ordered collection of non-
unique items. fruit_info ['price'] = 1.5

when it has assessed each
item in the iterable it is
working on or a break
keyword is encountered

A set is an unordered
collection unique items. A list
is an ordered collection of non-
unique items. fruit_info ['price'] = 1.5

when it encounters an infinite
loop

A set is an unordered
collection unique items. A list
is an ordered collection of non-
unique items. fruit_info ['price'] = 1.5

when it encounters an infinite
loop

A set is an unordered
collection unique items. A list
is an ordered collection of non-
unique items. fruit_info ['price'] = 1.5

when it encounters an if/else
statement that contains a
break keyword

A set is an unordered
collection unique items. A list
is an ordered collection of non-
unique items. my_list['price'] == 1.5

when it encounters an if/else
statement that contains a
break keyword

A set is an unordered
collection unique items. A list
is an ordered collection of non-
unique items. fruit_info ['price'] = 1.5

when it encounters an if/else
statement that contains a
break keyword

A set is an unordered
collection unique items. A list
is an ordered collection of non-
unique items. fruit_info ['price'] = 1.5

when it has assessed each
item in the iterable it is
working on or a break
keyword is encountered

A set is an unordered
collection unique items. A list
is an ordered collection of non-
unique items. fruit_info ['price'] = 1.5

when it has assessed each
item in the iterable it is
working on or a break
keyword is encountered

A set is an unordered
collection unique items. A list
is an ordered collection of non-
unique items. fruit_info ['price'] = 1.5

when it has assessed each
item in the iterable it is
working on or a break
keyword is encountered

A set is an unordered
collection unique items. A list
is an ordered collection of non-
unique items. fruit_info ['price'] = 1.5

when it encounters an if/else
statement that contains a
break keyword

A set is an unordered
collection unique items. A list
is an ordered collection of non-
unique items. my_list['price'] == 1.5

when it encounters an if/else
statement that contains a
break keyword

A set is an unordered
collection unique items. A list
is an ordered collection of non-
unique items. my_list['price'] == 1.5

when it has assessed each
item in the iterable it is
working on or a break
keyword is encountered

A set is an unordered
collection unique items. A list
is an ordered collection of non-
unique items. fruit_info ['price'] = 1.5

when it has assessed each
item in the iterable it is
working on or a break
keyword is encountered

A set is an unordered
collection unique items. A list
is an ordered collection of non-
unique items. fruit_info ['price'] = 1.5

when it has assessed each
item in the iterable it is
working on or a break
keyword is encountered

A set is an unordered
collection unique items. A list
is an ordered collection of non-
unique items. fruit_info ['price'] = 1.5

when it has assessed each
item in the iterable it is
working on or a break
keyword is encountered

A set is an unordered
collection unique items. A list
is an ordered collection of non-
unique items. fruit_info ['price'] = 1.5

when it has assessed each
item in the iterable it is
working on or a break
keyword is encountered

A set is an unordered
collection unique items. A list
is an ordered collection of non-
unique items. fruit_info ['price'] = 1.5

when it has assessed each
item in the iterable it is
working on or a break
keyword is encountered

A set is an unordered
collection unique items. A list
is an ordered collection of non-
unique items. fruit_info ['price'] = 1.5

when it has assessed each
item in the iterable it is
working on or a break
keyword is encountered

A set is an unordered
collection unique items. A list
is an ordered collection of non-
unique items. fruit_info ['price'] = 1.5

when it has assessed each
item in the iterable it is
working on or a break
keyword is encountered

A set is an unordered
collection unique items. A list
is an ordered collection of non-
unique items. fruit_info ['price'] = 1.5

when it has assessed each
item in the iterable it is
working on or a break
keyword is encountered

A set is an unordered
collection unique items. A list
is an ordered collection of non-
unique items. fruit_info ['price'] = 1.5

when it has assessed each
item in the iterable it is
working on or a break
keyword is encountered

A set is an unordered
collection unique items. A list
is an ordered collection of non-
unique items. fruit_info ['price'] = 1.5

when it encounters an if/else
statement that contains a
break keyword

A set is an ordered collection
unique items. A list is an
unordered collection of non-
unique items. my_list['price'] == 1.5

when it has assessed each
item in the iterable it is
working on or a break
keyword is encountered

A set is an unordered
collection unique items. A list
is an ordered collection of non-
unique items. fruit_info ['price'] = 1.5

when it has assessed each
item in the iterable it is
working on or a break
keyword is encountered

A set is an unordered
collection unique items. A list
is an ordered collection of non-
unique items. fruit_info ['price'] = 1.5

when it encounters an if/else
statement that contains a
break keyword

A set is an unordered
collection unique items. A list
is an ordered collection of non-
unique items. fruit_info ['price'] = 1.5

when it has assessed each
item in the iterable it is
working on or a break
keyword is encountered

A set is an unordered
collection unique items. A list
is an ordered collection of non-
unique items. fruit_info ['price'] = 1.5

when it encounters an if/else
statement that contains a
break keyword

A set is an unordered
collection unique items. A list
is an ordered collection of non-
unique items. fruit_info ['price'] = 1.5

when it has assessed each
item in the iterable it is
working on or a break
keyword is encountered

A set is an ordered collection
unique items. A list is an
unordered collection of non-
unique items. fruit_info ['price'] = 1.5

when it has assessed each
item in the iterable it is
working on or a break
keyword is encountered

A set is an unordered
collection unique items. A list
is an ordered collection of non-
unique items. fruit_info ['price'] = 1.5

when it has assessed each
item in the iterable it is
working on or a break
keyword is encountered

A set is an ordered collection
unique items. A list is an
unordered collection of non-
unique items. fruit_info ['price'] = 1.5

when it has assessed each
item in the iterable it is
working on or a break
keyword is encountered

A set is an unordered
collection unique items. A list
is an ordered collection of non-
unique items. fruit_info ['price'] = 1.5

when it has assessed each
item in the iterable it is
working on or a break
keyword is encountered

A set is an unordered
collection unique items. A list
is an ordered collection of non-
unique items. fruit_info ['price'] = 1.5

when the runtime for the loop
exceeds O(n^2)

A set is an unordered
collection unique items. A list
is an ordered collection of non-
unique items. my_list['price'] == 1.5

when it has assessed each
item in the iterable it is
working on or a break
keyword is encountered

A set is an unordered
collection unique items. A list
is an ordered collection of non-
unique items. fruit_info ['price'] = 1.5

when it encounters an if/else
statement that contains a
break keyword

A set is an unordered
collection unique items. A list
is an ordered collection of non-
unique items. fruit_info ['price'] = 1.5

when it has assessed each
item in the iterable it is
working on or a break
keyword is encountered

A set is an unordered
collection unique items. A list
is an ordered collection of non-
unique items. fruit_info ['price'] = 1.5

when it has assessed each
item in the iterable it is
working on or a break
keyword is encountered

A set is an unordered
collection unique items. A list
is an ordered collection of non-
unique items. fruit_info ['price'] = 1.5

when it encounters an infinite
loop

A set is an unordered
collection unique items. A list
is an ordered collection of non-
unique items. fruit_info ['price'] = 1.5

when it has assessed each
item in the iterable it is
working on or a break
keyword is encountered

A set is an unordered
collection unique items. A list
is an ordered collection of non-
unique items. fruit_info ['price'] = 1.5

when it has assessed each
item in the iterable it is
working on or a break
keyword is encountered

A set is an unordered
collection unique items. A list
is an ordered collection of non-
unique items. fruit_info ['price'] = 1.5

when it has assessed each
item in the iterable it is
working on or a break
keyword is encountered

A set is an unordered
collection unique items. A list
is an ordered collection of non-
unique items. fruit_info ['price'] = 1.5

when it has assessed each
item in the iterable it is
working on or a break
keyword is encountered

A set is an unordered
collection unique items. A list
is an ordered collection of non-
unique items. fruit_info ['price'] = 1.5

when it has assessed each
item in the iterable it is
working on or a break
keyword is encountered

A set is an ordered collection
of non-unique items. A list is
an unordered collection of
unique items. fruit_info ['price'] = 1.5

when it has assessed each
item in the iterable it is
working on or a break
keyword is encountered

A set is an unordered
collection unique items. A list
is an ordered collection of non-
unique items. fruit_info ['price'] = 1.5

when it has assessed each
item in the iterable it is
working on or a break
keyword is encountered

A set is an ordered collection
unique items. A list is an
unordered collection of non-
unique items. fruit_info ['price'] = 1.5

8) You are given a piece of
code. Assume m and n are
already defined as some
positive integer value. When
it completes, how many tuples
will my list contain?

9) Assume m, n and p are
positive integers. In the
following comprehension, how
many times will the function
randint be called?

10) What is the correct
syntax for replacing the string
apple in the list with the string
orange?

my_list = [2, 'apple', 3.5]

m * n m _ n _ p my_list[1] = 'orange'

m * n m _ n _ p my_list[1] = 'orange'

m * n m + n + p my_list[1] = 'orange'

m * n m _ n _ p my_list[1] = 'orange'

m * n m _ n _ p my_list[1] = 'orange'

m * n m + n + p my_list[1] = 'orange'

m * n the greater value of (m,n,p) my_list[1] = 'orange'

m * n m _ n _ p my_list[1] = 'orange'

m * n m _ n _ p my_list[1] = 'orange'

m * n my_list[1] = 'orange'

m * n m + n + p my_list[1] = 'orange'

m * n m _ n _ p my_list[1] = 'orange'

m * n m _ n _ p my_list[1] = 'orange'

m * n m _ n _ p my_list[1] = 'orange'

m * n m _ n _ p my_list[1] = 'orange'

m * n m _ n _ p my_list[1] = 'orange'

m * n m _ n _ p my_list[1] = 'orange'

m * n my_list[1] = 'orange'

m * n m _ n _ p my_list[1] = 'orange'

m * n m _ n _ p my_list[1] = 'orange'

m * n m _ n _ p my_list[1] = 'orange'

m * n m _ n _ p my_list[1] = 'orange'

m * n m _ n _ p my_list[1] = 'orange'

m * n m _ n _ p my_list[1] = 'orange'

m * n m _ n _ p my_list[1] = 'orange'

m * n m _ n _ p my_list[1] = 'orange'

m * n 1 million my_list[1] = 'orange'

m + n the greater value of (m,n,p) my_list[1] = 'orange'

m * n m + n + p my_list[1] = 'orange'

m * n m _ n _ p my_list[1] = 'orange'

m * n m + n + p my_list[1] = 'orange'

m * n m _ n _ p my_list[1] = 'orange'

m * n m _ n _ p my_list[1] = 'orange'

m * n m _ n _ p my_list[1] = 'orange'

m * n m _ n _ p my_list[1] = 'orange'

m * n m _ n _ p my_list[1] = 'orange'

m + n the greater value of (m,n,p) orange = my_list[1]

m m _ n _ p my_list[1] = 'orange'

m m _ n _ p my_list[1] = 'orange'

m * n m + n + p my_list[1] = 'orange'

m + n m + n + p my_list[1] = 'orange'

m + n m _ n _ p my_list[1] = 'orange'

m + n m _ n _ p my_list[1] = 'orange'

m + n the greater value of (m,n,p) my_list[1] = 'orange'

m * n m + n + p my_list[1] = 'orange'

m + n m + n + p my_list[1] = 'orange'

m * n m _ n _ p my_list[1] = 'orange'

m the greater value of (m,n,p) my_list[1] == orange

m * n m _ n _ p my_list[1] = 'orange'

m * n m _ n _ p my_list[1] = 'orange'

m * n m + n + p my_list[1] = 'orange'

m * n m _ n _ p my_list[1] = 'orange'

m * n m _ n _ p my_list[1] = 'orange'

m * n m _ n _ p my_list[1] = 'orange'

m * n m _ n _ p my_list[1] = 'orange'

m * n m _ n _ p my_list[1] = 'orange'

m * n m _ n _ p my_list[1] = 'orange'

m * n m _ n _ p my_list[1] = 'orange'

m * n m _ n _ p my_list[1] = 'orange'

m * n my_list[1] = 'orange'

11) Which comparison of lists
and tuples in Python is
correct?

12) What will this code output
to the screen?
for i in range(5):
 print(i)
else:
 print("Done!")

13) Which collection is
ordered, changeable, and
allows duplicate members?

Use tuples instead of lists for
functions that need to return
multiple values. 0 1 2 3 4 Done! LIST

Use tuples instead of lists for
functions that need to return
multiple values. 0 1 2 3 4 Done! LIST

Use lists instead of tuples
when you have a collection of
related but dissimilar objects. You will get a syntax error. SET

Use tuples instead of lists for
functions that need to return
multiple values. 0 1 2 3 4 Done! LIST

Use lists instead of tuples
when you have a collection of
related but dissimilar objects. 0 1 2 3 4 Done! LIST

Use lists instead of tuples
when you have a collection of
related but dissimilar objects. 0 1 2 3 4 Done! LIST

Use lists instead of tuples
when the position of elements
is important. 0 1 2 3 4 5 Done! LIST

Use tuples instead of lists for
functions that need to return
multiple values. 0 1 2 3 4 Done! LIST

Use tuples instead of lists for
functions that need to return
multiple values. 0 1 2 3 4 Done! LIST

Use tuples instead of lists for
functions that need to return
multiple values. 0 1 2 3 4 Done! LIST

Use tuples instead of lists for
functions that need to return
multiple values. 0 1 2 3 4 Done! LIST

Use tuples instead of lists for
functions that need to return
multiple values. 0 1 2 3 4 Done! LIST

Use tuples instead of lists for
functions that need to return
multiple values. 0 1 2 3 4 Done! LIST

Use tuples instead of lists for
functions that need to return
multiple values. 0 1 2 3 4 Done! LIST

Use tuples instead of lists for
functions that need to return
multiple values. 0 1 2 3 4 Done! LIST

Use tuples instead of lists for
functions that need to return
multiple values. 0 1 2 3 4 Done! LIST

Use tuples instead of lists for
functions that need to return
multiple values. 0 1 2 3 4 Done! LIST

Use tuples instead of lists for
functions that need to return
multiple values. 0 1 2 3 4 5 Done! LIST

Use tuples instead of lists for
functions that need to return
multiple values. 0 1 2 3 4 Done! LIST

Use tuples instead of lists for
functions that need to return
multiple values. 0 1 2 3 4 Done! LIST

Use tuples instead of lists for
functions that need to return
multiple values. 0 1 2 3 4 Done! LIST

Use tuples instead of lists for
functions that need to return
multiple values. 0 1 2 3 4 Done! LIST

Use tuples instead of lists for
functions that need to return
multiple values. 0 1 2 3 4 Done! LIST

Use tuples instead of lists for
functions that need to return
multiple values. 0 1 2 3 4 Done! LIST

Use tuples instead of lists for
functions that need to return
multiple values. 0 1 2 3 4 Done! LIST

Use tuples instead of lists for
functions that need to return
multiple values. 0 1 2 3 4 Done! LIST

Use tuples instead of lists for
functions that need to return
multiple values. 0 1 2 3 4 Done! LIST

Use lists instead of tuples
when you have a collection of
related but dissimilar objects. 0 1 2 3 4 Done! LIST

Use lists instead of tuples
when you have a collection of
related but dissimilar objects. 0 1 2 3 4 Done! LIST

Use tuples instead of lists for
functions that need to return
multiple values. 0 1 2 3 4 Done! LIST

Use lists instead of tuples
when you have a collection of
related but dissimilar objects. 0 1 2 3 4 Done! LIST

Use tuples instead of lists for
functions that need to return
multiple values. 0 1 2 3 4 Done! LIST

Use tuples instead of lists for
functions that need to return
multiple values. 0 1 2 3 4 Done! LIST

Use tuples instead of lists
when you have a common
collection of similar objects. 0 1 2 3 4 Done! LIST

Use tuples instead of lists for
functions that need to return
multiple values. 0 1 2 3 4 Done! LIST

Use tuples instead of lists for
functions that need to return
multiple values. 0 1 2 3 4 Done! LIST

Use tuples instead of lists
when you have a common
collection of similar objects. 1 2 3 4 5 Done! TUPLE

0 1 2 3 4 Done! LIST

0 1 2 3 4 Done! LIST

Use lists instead of tuples
when the position of elements
is important. 0 1 2 3 4 Done! LIST

Use tuples instead of lists
when you have a common
collection of similar objects. 0 1 2 3 4 Done! LIST

Use tuples instead of lists
when you have a common
collection of similar objects. 0 1 2 3 4 Done! LIST

Use tuples instead of lists
when you have a common
collection of similar objects. 0 1 2 3 4 Done! TUPLE

Use lists instead of tuples
when you have a collection of
related but dissimilar objects. 0 1 2 3 4 Done! LIST

Use tuples instead of lists
when you have a common
collection of similar objects. You will get a syntax error. TUPLE

Use tuples instead of lists
when you have a common
collection of similar objects. 0 1 2 3 4 Done! LIST

Use tuples instead of lists
when you have a common
collection of similar objects. 0 1 2 3 4 Done! LIST

Use tuples instead of lists for
functions that need to return
multiple values. 0 1 2 3 4 5 Done! DICTIONARY

Use tuples instead of lists for
functions that need to return
multiple values. 0 1 2 3 4 Done! LIST

Use tuples instead of lists for
functions that need to return
multiple values. 0 1 2 3 4 Done! LIST

Use lists instead of tuples
when you have a collection of
related but dissimilar objects. 0 1 2 3 4 Done! LIST

Use tuples instead of lists for
functions that need to return
multiple values. 0 1 2 3 4 Done! LIST

Use tuples instead of lists for
functions that need to return
multiple values. 0 1 2 3 4 Done! LIST

Use tuples instead of lists for
functions that need to return
multiple values. 0 1 2 3 4 Done! LIST

Use tuples instead of lists for
functions that need to return
multiple values. 0 1 2 3 4 Done! LIST

Use tuples instead of lists for
functions that need to return
multiple values. 0 1 2 3 4 Done! LIST

Use tuples instead of lists for
functions that need to return
multiple values. 0 1 2 3 4 Done! LIST

Use tuples instead of lists for
functions that need to return
multiple values. 0 1 2 3 4 Done! LIST

Use tuples instead of lists for
functions that need to return
multiple values. 0 1 2 3 4 Done! LIST

0 1 2 3 4 5 Done! DICTIONARY

14) What happens if the file is
not found in the following
Python code?
a=False
while not a:
 try:

15) What will be the output of
the following Python code?
lst = [1, 2, 3]
lst[3]

16) Identify the type of error in
the following Python codes?
Print(“Good Morning”)
print(“Good night)

Input output error IndexError Semantic, Syntax

No error IndexError Semantic, Syntax

Input output error IndexError Syntax, Syntax

No error IndexError Semantic, Syntax

No error IndexError Syntax, Syntax

Input output error IndexError Syntax, Syntax

No error ValueError Semantic, Syntax

Input output error IndexError Syntax, Syntax

No error IndexError Semantic, Syntax

Input output error IndexError Semantic, Syntax

Input output error IndexError Semantic, Syntax

Input output error IndexError Syntax, Semantic

Input output error IndexError Syntax, Semantic

No error IndexError Semantic, Syntax

No error IndexError Semantic, Syntax

No error IndexError Semantic, Syntax

No error IndexError Semantic, Syntax

Input output error IndexError Semantic, Syntax

No error IndexError Semantic, Syntax

No error IndexError Semantic, Syntax

No error IndexError Semantic, Syntax

Input output error IndexError Semantic, Syntax

Input output error IndexError Semantic, Syntax

No error IndexError Semantic, Syntax

No error IndexError Semantic, Syntax

No error IndexError Syntax, Semantic

Name error IndexError Semantic, Syntax

Input output error IndexError Semantic, Syntax

No error IndexError Semantic, Syntax

No error IndexError Semantic, Syntax

No error IndexError Semantic, Syntax

Input output error IndexError Semantic, Syntax

No error IndexError Semantic, Syntax

No error IndexError Semantic, Syntax

No error IndexError Semantic, Syntax

No error IndexError Semantic, Syntax

Input output error IndexError Semantic, Syntax

No error IndexError Syntax, Syntax

No error IndexError Syntax, Syntax

Assertion error IndexError Semantic, Syntax

IndexError Semantic, Syntax

No error IndexError Semantic, Syntax

IndexError Semantic, Syntax

Input output error ValueError Semantic, Syntax

Assertion error IndexError Semantic, Semantic

No error IndexError Semantic, Syntax

Input output error IndexError Semantic, Syntax

Assertion error ValueError Semantic, Semantic

No error IndexError Semantic, Syntax

No error IndexError Semantic, Syntax

No error IndexError Syntax, Syntax

No error IndexError Semantic, Syntax

No error IndexError Semantic, Syntax

No error IndexError Semantic, Syntax

No error IndexError Semantic, Syntax

No error IndexError Semantic, Syntax

No error IndexError Semantic, Syntax

No error ValueError Semantic, Syntax

No error IndexError Semantic, Syntax

Name error IndexError Syntax, Syntax

17) An exception is

18) How many keyword
arguments can be passed to a
function in a single function
call?

19) How many except
statements can a try-except
block have?

an object zero or more more than zero

an object zero or more more than zero

a module one or more more than one

an object zero or more more than zero

an object zero or more more than one

an object zero or more more than one

a special function one more than one

an object one or more more than one

an object zero or more more than zero

an object zero or more more than zero

an object one or more more than one

an object one or more more than one

an object one or more more than one

an object zero or more more than zero

an object zero or more more than zero

an object zero or more more than zero

an object zero 1

an object zero 1

an object one or more more than one

an object zero or more more than zero

an object zero or more more than zero

an object zero 1

an object zero 1

an object one more than one

an object zero or more more than zero

an object one or more 1

an object zero or more 1

an object zero or more 1

an object zero 1

an object zero 1

an object zero 1

an object zero more than one

an object one more than one

an object zero or more more than zero

an object zero or more more than zero

an object zero or more more than one

a special function zero or more 1

a standard module zero or more 1

a special function zero or more 1

an object one or more more than zero

a special function zero or more

an object zero or more more than one

a standard module zero or more more than one

an object one 1

a special function zero or more 1

an object zero more than zero

an object zero or more more than one

a standard module zero or more more than one

an object zero or more more than zero

an object zero or more more than zero

an object zero or more more than one

an object zero or more more than zero

an object zero or more more than zero

an object zero or more more than zero

an object zero or more more than zero

an object zero or more more than zero

a special function one more than one

a module zero or more 1

an object zero or more more than zero

a special function one or more more than one

20) Which of the following
will print the pi value defined
in math module?

21) Which operator is used in
Python to import modules
from packages?

22) How is a function
declared in Python?

from math import pi print(pi) . def function_name():

from math import pi print(pi) . def function_name():

print(math.pi) .

from math import pi print(pi) . def function_name():

print(math.pi) . def function_name():

from math import pi print(pi) . def function_name():

from math import pi print(pi) * def function_name():

from math import pi print(pi) . def function_name():

from math import pi print(pi) . def function_name():

from math import pi print(pi) . def function_name():

from math import pi print(pi) . def function_name():

print(math.pi) -> def function_name():

print(math.pi) -> def function_name():

from math import pi print(pi) . def function_name():

from math import pi print(pi) . def function_name():

from math import pi print(pi) . def function_name():

print(pi) . def function_name():

print(pi) ->

from math import pi print(pi) . def function_name():

from math import pi print(pi) . def function_name():

from math import pi print(pi) . def function_name():

print(pi) . def function_name():

print(pi) . def function_name():

from math import pi print(pi) . def function_name():

from math import pi print(pi) . def function_name():

from math import pi print(pi) . def function_name():

from math import pi print(pi) . def function_name():

from math import pi print(pi) . def function_name():

print(math.pi) . def function_name():

print(pi) . def function_name():

print(pi) . def function_name():

print(pi) . def function_name():

print(pi) . def function_name():

from math import pi print(pi) . def function_name():

from math import pi print(pi) . def function_name():

from math import pi print(pi) . def function_name():

from math import pi print(pi) * def function_name():

from math import pi
print(math.pi) * def function_name():

from math import pi
print(math.pi) * def function_name():

from math import pi
print(math.pi) . def function_name():

from math import pi
print(math.pi) . def function_name():

from math import pi print(pi) . def function_name():

from math import pi print(pi) . def function_name():

from math import pi
print(math.pi) -> def function_name():

from math import pi
print(math.pi) . def function_name():

from math import pi print(pi) . def function_name():

from math import pi print(pi) . def function_name():

from math import pi print(pi) *
declare function
function_name():

from math import pi print(pi) . def function_name():

from math import pi print(pi) . def function_name():

print(math.pi) . def function_name():

from math import pi print(pi) . def function_name():

from math import pi print(pi) . def function_name():

from math import pi print(pi) . def function_name():

from math import pi print(pi) . def function_name():

from math import pi print(pi) . def function_name():

from math import pi print(pi) . def function_name():

from math import pi print(pi) . def function_name():

from math import pi print(pi) . def function_name():

from math import pi print(pi) . def function_name():

23) Which one of the
following is the correct way of
calling a function?

24) Choose the correct option
with reference to below
Python code?
def fn(a):

 print(a)

25) Which one of the
following is incorrect?

function_name() x is the actual argument.

The local variables of a
particular function can be
used inside other functions,
but these cannot be used in
global space

function_name() x is the actual argument.

The local variables of a
particular function can be
used inside other functions,
but these cannot be used in
global space

function_name() x is the formal argument.

In order to change the value
of global variable inside
function, keyword global is
used.

function_name() x is the actual argument.

The local variables of a
particular function can be
used inside other functions,
but these cannot be used in
global space

function_name() x is the actual argument.

The local variables of a
particular function can be
used inside other functions,
but these cannot be used in
global space

function_name() x is the actual argument.

In order to change the value
of global variable inside
function, keyword global is
used.

ret function_name() a is the actual argument.

The local variables of a
particular function can be
used inside other functions,
but these cannot be used in
global space

function_name() x is the actual argument.

The local variables of a
particular function can be
used inside other functions,
but these cannot be used in
global space

function_name() x is the actual argument.

The local variables of a
particular function can be
used inside other functions,
but these cannot be used in
global space

function_name() x is the actual argument.

The local variables of a
particular function can be
used inside other functions,
but these cannot be used in
global space

function_name() x is the actual argument.

The local variables of a
particular function can be
used inside other functions,
but these cannot be used in
global space

function_name() x is the actual argument.

The local variables of a
particular function can be
used inside other functions,
but these cannot be used in
global space

function_name() x is the actual argument.

The local variables of a
particular function can be
used inside other functions,
but these cannot be used in
global space

function_name() x is the actual argument.

The local variables of a
particular function can be
used inside other functions,
but these cannot be used in
global space

function_name() x is the actual argument.

The local variables of a
particular function can be
used inside other functions,
but these cannot be used in
global space

function_name() x is the actual argument.

The local variables of a
particular function can be
used inside other functions,
but these cannot be used in
global space

function_name() x is the actual argument.

The local variables of a
particular function can be
used inside other functions,
but these cannot be used in
global space

function_name() x is the formal argument.

The local variables of a
particular function can be
used inside other functions,
but these cannot be used in
global space

function_name() x is the formal argument.

The local variables of a
particular function can be
used inside other functions,
but these cannot be used in
global space

function_name() x is the actual argument.

The local variables of a
particular function can be
used inside other functions,
but these cannot be used in
global space

function_name() x is the actual argument.

The local variables of a
particular function can be
used inside other functions,
but these cannot be used in
global space

ret function_name() fn(x) is the function signature.

In order to change the value
of global variable inside
function, keyword global is
used.

function_name() x is the formal argument.

The local variables of a
particular function can be
used inside other functions,
but these cannot be used in
global space

function_name() x is the actual argument.

The local variables of a
particular function can be
used inside other functions,
but these cannot be used in
global space

function_name() x is the actual argument.

The local variables of a
particular function can be
used inside other functions,
but these cannot be used in
global space

function_name() x is the actual argument.

The local variables of a
particular function can be
used inside other functions,
but these cannot be used in
global space

function_name() fn(x) is the function signature.

The local variables of a
particular function can be
used inside other functions,
but these cannot be used in
global space

function_name() x is the actual argument.

The local variables of a
particular function can be
used inside other functions,
but these cannot be used in
global space

ret function_name() x is the actual argument.

The local variables of a
particular function can be
used inside other functions,
but these cannot be used in
global space

function_name() x is the actual argument.

The local variables of a
particular function can be
used inside other functions,
but these cannot be used in
global space

ret function_name() x is the actual argument.

The local variables of a
particular function can be
used inside other functions,
but these cannot be used in
global space

function_name() x is the actual argument.

The local variables of a
particular function can be
used inside other functions,
but these cannot be used in
global space

function_name() x is the actual argument.

The local variables of a
particular function can be
used inside other functions,
but these cannot be used in
global space

function_name() x is the actual argument.

The local variables of a
particular function can be
used inside other functions,
but these cannot be used in
global space

function_name() x is the actual argument.

The local variables of a
particular function can be
used inside other functions,
but these cannot be used in
global space

function_name() x is the actual argument.

The local variables of a
particular function can be
used inside other functions,
but these cannot be used in
global space

function_name() x is the formal argument.

The local variables of a
particular function can be
used inside other functions,
but these cannot be used in
global space

function_name() a is the actual argument.

The variables used outside
function are called global
variables

function_name() a is the actual argument.

The variables used outside
function are called global
variables

function_name() x is the formal argument.

In order to change the value
of global variable inside
function, keyword global is
used.

function_name() x is the actual argument.

The variables used inside
function are called local
variables.

function_name() fn(x) is the function signature.

The local variables of a
particular function can be
used inside other functions,
but these cannot be used in
global space

function function_name() x is the actual argument.

In order to change the value
of global variable inside
function, keyword global is
used.

function_name() x is the actual argument.

The local variables of a
particular function can be
used inside other functions,
but these cannot be used in
global space

function_name() x is the actual argument.

The local variables of a
particular function can be
used inside other functions,
but these cannot be used in
global space

function_name() x is the formal argument.

The local variables of a
particular function can be
used inside other functions,
but these cannot be used in
global space

function_name() x is the actual argument.

The local variables of a
particular function can be
used inside other functions,
but these cannot be used in
global space

call function_name() x is the formal argument.

The local variables of a
particular function can be
used inside other functions,
but these cannot be used in
global space

function_name() x is the actual argument.

The local variables of a
particular function can be
used inside other functions,
but these cannot be used in
global space

function_name() x is the actual argument.

The local variables of a
particular function can be
used inside other functions,
but these cannot be used in
global space

function function_name() x is the formal argument.

The local variables of a
particular function can be
used inside other functions,
but these cannot be used in
global space

function_name() x is the actual argument.

The local variables of a
particular function can be
used inside other functions,
but these cannot be used in
global space

function_name() x is the actual argument.

The local variables of a
particular function can be
used inside other functions,
but these cannot be used in
global space

function_name() x is the actual argument.

The local variables of a
particular function can be
used inside other functions,
but these cannot be used in
global space

function_name() x is the actual argument.

The local variables of a
particular function can be
used inside other functions,
but these cannot be used in
global space

function_name() x is the actual argument.

The local variables of a
particular function can be
used inside other functions,
but these cannot be used in
global space

function_name() x is the actual argument.

The local variables of a
particular function can be
used inside other functions,
but these cannot be used in
global space

function_name()

In order to change the value
of global variable inside
function, keyword global is
used.

function_name() x is the actual argument.

The local variables of a
particular function can be
used inside other functions,
but these cannot be used in
global space

function_name() x is the formal argument.

The variables used inside
function are called local
variables.

	1. Evaluation
	The value added courses shall carry 100 marks and shall be evaluated through internal
	Assessments only.
	Continuous Assessment (CA)
	Continuous Assessment Tests
	2. Grading
	3. Awarding Certificate

